
Stream Processing
in Java

Presented by: Vladimír Schreiner <vladimir@hazelcast.com>
@voloda

Housekeeping

Agenda

• Modern DBs x Streaming

• Concern #1 - Time

• Concern #2 - Connectors

• Concern #3 – Scaling?

System Health Monitoring

DB

App 1

App 2

10:22:01 12ms
10:22:01 15ms
10:22:02 10ms
…

10:22:00 150ms
10:22:02 159ms
10:22:02 170ms
…

A: SELECT AVG(responseTime)
FROM logs
WHERE timestamp
BETWEEN NOW()
AND NOW() - INTERVAL 1 DAY;

B: ...
AND NOW() - INTERVAL 1 SECOND;

1

1

2

B / A > 1,1 -> Alert event3

DB tuned for append-only tables

• Stream: ordered sequence of immutable records

• Log records, clicks, IoT readings, business events, …

• Stream Processing: querying the stream continuously

• Continuously transform, join, aggregate, …

Focal areas of Streaming

1. Time as a first class citizen

2. Connectivity

3. Scale

Time

When should we get the results?

DB

App 1

App 2

10:22:01 12ms
10:22:01 15ms
10:22:02 10ms
…

10:22:00 150ms
10:22:02 159ms
10:22:02 170ms
…

A: SELECT AVG(responseTime)
FROM logs
WHERE timestamp
BETWEEN NOW()
AND NOW() - INTERVAL 1 DAY;

B: ...
AND NOW() - INTERVAL 1 SECOND;

1

1

2

B / A > 1,1 -> Alert event3

Stream Processing is ”push”

• Database allows clients to pull data by querying it’s state

• Streaming Engine runs a continuous query and pushes
updates to consumers

• Continuous programming model decouples query submission
from result materialization!

• Computations driven by input data, not by query submission

• Low latency and correct results!

Windows to define data ranges

Windows define the ranges in the append only table

Engine runs the query as soon as it has complete data for the window

Tumbling
(size)

1 2 3

3

Sliding
(size + step)

1

2

New API to define windows

SELECT AVG(resoponseTime)
FROM Logs
GROUP BY SLIDING(timestamp,

INTERVAL '1‘ SECOND, INTERVAL '1' DAY)

Results are published after the engine recieved and processed
all input data for the time window.

When the window completes?

10:22:00 12ms
10:22:00 15ms
10:22:02 10ms

10:22:00 150ms
10:22:01 159ms
10:22:02 170ms

App 1 App 2

Time (as observed by stream processor)

Stream Processor

Ok, I can publish results
for 10:22:00 now..

WTF???

Strategies for unordered data

• Waiting for stragglers

”Maybe somebody is late, let’s waiting another ___ before publishing
results”

• Publish early results

“Based on the data seen so far, the result is ___ ”

Time - Summary

• Streaming queries run continuously and push results to
subscribers.

• Event-driven querying for lower latency

• Declarative API to for data driven "triggers”

• Windowing - which data are required for the computation

• When to publish the results

Use Case: Analytics and Decision Making
• Real-time dashboards

• Stats (gaming, infrastructure monitoring)

• Decision making

• Recommendations

• Prediction - often based on algorithmic prediction (push
stream through ML model)

• Complex Event Processing

• Moving average

Train Demo!

OpenTTD (C++) Jet Cluster

Hazelcast C++ client
Ingested position

points

Detected collisions

Collision Detection Jet
Job

Collision Event Handler
(Hazelcast Client

Service)

{ Train 1 ,
x position ,
y position }

{ Train 1 } , { Train 2 }

https://github.com/vladoschreiner/transport-tycoon-demo

https://github.com/vladoschreiner/transport-tycoon-demo

How prediction works?

Connectors

Typical
Legacy
Architecture

RDBMS

APP APP APP

One needs stream of data for streaming!

• Stream is a sequence of immutable events,
the append-only table

• To enable streaming, we need applications that:

• Produces events

• Deliver events to a streaming engine

• E.g.: using client (agent), publish changes to a message broker

In the meanwhile in a real world

IMPEDANCE MISMATCH

Change Data Capture
(CDC) turns legacy

database to a source of
event stream.

RDBMS
with CDC

APP APP APP

APP

INSERT INTO ...

{ Op: “c”, ts: __, old-value: ___, new-value: ___ }

APP

RDBMS

APP APPAPP

Travelling
Back in
Time

https://github.com/hazelcast/hazelcast-jet-demos/tree/master/debezium-cdc-without-kafka

https://github.com/hazelcast/hazelcast-jet-demos/tree/master/debezium-cdc-without-kafka

LAMP stack
GBs of data
Mostly OLTP,
OLAP after
hours

MySQL

Web APP Web APP Web APP

Real-time
updates =
Real-time
expectations

MySQL

Web APP Web APP Web APP

Continuous query
Top 10 scorers

INSERT INTO ...

CDC

Web APP

Hazelcast Jet
Open-source library with

stream processor,
connectors including CDC

and a key-value store.

Single Java Binary
Elastic Clustering

No ZooKeeper, HDFS..
Just Java 8 and above

Hazelcast Jet runs
Debezium for CDC

MySQL

Web APP Web APP Web APP

Continuous query
Top 10 scorersCDC

Web app

INSERT INTO ...

The following can be used as easy to replay
backup logs or for replication.
server-id = 1
log_bin = /var/log/mysql/mysql-bin.log
binlog_format = row
binlog_row_image = full
expire_logs_days = 2

MySQL

Web APP Web APP Web APP

Continuous query
Top 10 scorersCDC

Web APP
Clients for many

platforms

Cached lookup
tables

Relational databases
usually keep shorter
history, compared to
dedicated log-based

storages.

CDC + SPE + CACHE =

Materialized Views
Offloaded from the DB

Modularization
Microservices

Real-time stats service

MySQL

Web APP Web APP Web APP

Game result prediction
service

Archivation service

Connectors - summary

• Stream processing requires input data presented as streams -
sequences of immutable records (”append-only table”)

• Streaming frameworks come with clients, agents and
connectors (messaging, Kafka, …)

• CDC - a streaming API to a database.

• Extracts database changes

• No standard, many CDC vendors.

• Consider Jet for materialized views in Java

Scaling

Node 1

Modern SPEs are build to scale

read cmb
map

+
filter

acc sink

read cmb
map

+
filter

acc

Node 2

read cmb
map

+
filter

acc

sinkread cmb
map

+
filter

acc

Data
Source

Data
Sink

sink

sink

Do I need a streaming cluster?

• A single node can handle 1 million events / s

• Fault-tolerance for instant failover

• Elasticity for performance spikes

Fault Tolerance Using Replication

• State of the computation replicated across the cluster

• The tasks of the failed member recovered on other members
using the backup replicas

• Regular snapshots for a light-weigh F-T

• Regularly snapshot cluster state and store it reliably

• Restart computation from last snapshot if it fails

• Replay a short history of the stream

Summary

• Streaming is database ”optimised for append-only tables”

• Main UC: Event-driven querying

• Connect streaming to legacy applications using CDC

• Create materialized views outside the database to reduce the
database load and modularize your architecture.

https://jet.hazelcast.org/

https://hazelcast.com/blog/how-hazelcast-jet-compares-to-
apache-spark/

https://jet.hazelcast.org/
https://hazelcast.com/blog/how-hazelcast-jet-compares-to-apache-spark/

Thank You

