
H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

The Introduction

Who is speaking?

svenruppert.com

Dev. Advocate – DevSecOps
JFrog Inc
Twitter: @SvenRuppert

Youtube: [DE] - bit.ly/Youtube-Sven

Introduction
What is the target of this talk?

Internal web applications with a few
users but dealing with some TB of data

Apps on embedded devices

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

The Basic Ideas

Persistence BirdEye-View

App

• App modell
• based on core data-structures

Cache

• maybe model mapping
• logic for cache management

Storage
Engine

• mostly modell mapping
• IPC or Network

Basic questions about the data behaviour

Basic questions about the data behaviour
How stable is your data?

Write once, archive it, never touch it

A sliding window of hot data, rest is archived

All data is hot

How to navigate through the data?

SQL , Cypher , Streams , ??

All attributes? Calculated fields? Dynamic Views?

MVCC
Multi-Version Concurrency Control

MVCC
https://github.com/aidanmorgan/pojo-mvcc

This project contains a simple in-memory Multi-version
concurrency control cache for use in Java projects.

In short words: Multi-version concurrency control (MVCC) is a standard technique for avoiding
conflicts between reads and writes of the same object. POJO-MVCC guarantees that each transaction
sees a consistent view of the object by reading non-current data for objects modified by concurrent
transactions. MVCC is a fairly common technique in database transaction implementation and is
becoming more common in caching implementations.

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

No dependency – Core Java / Apache Lic

https://github.com/aidanmorgan/pojo-mvcc
https://en.wikipedia.org/wiki/Multiversion_concurrency_control

MVCC
In short words:

For every object that will be modified
the kernel will hold multiple versions of the object

every object version will
get different timestamps or transaction numbers for
reads and modifications

positive: non-blocking reads

negative: multiple versions of
an object in memory

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

Some random approaches

Some Random Approaches

create
.select(BOOK.TITLE)
.from(BOOK)
.where(BOOK.PUBLISHED_IN
.eq(2011))
.orderBy(BOOK.TITLE)

JOOQ

Mapping SQL to Java DSL – SQL-style

Generated from the DB Schema

Some Random Approaches

JPAStreamer.org

JPAstreamer is released under the LGPL 2.1 License.

Streams over JDBC

Streams over JPA

Generated from the DB Schema

https://github.com/speedment/jpa-streamer/blob/master/LICENSE

Some Random Approaches

jpaStreamer
.stream(Film.class)
.filter(Film$.rating.equal("G"))
.sorted(Film$.length

.reversed()

.thenComparing(Film$.title
.comparator()))

.skip(10)

.limit(5)
.forEach(System.out::println);

Some Random Approaches
Solutions are focussing on convenience only.

Try to get the API Java-like

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

Chronicle Maps/Bytes

Chronicle Maps/Bytes
Chronicle Bytes contains all the low level memory access wrappers. It
is built on Chronicle Core’s direct memory and OS system call access.

Chronicle Map is a super-fast, in-memory, non-blocking, key-value
store, designed for low-latency, and/or multi-process applications
such as trading and financial market applications.
The size of a Chronicle Map is not limited by memory (RAM), but
rather by the available disk capacity.

https://github.com/OpenHFT/Chronicle-Map

https://github.com/OpenHFT/Chronicle-Bytes

https://github.com/OpenHFT/Chronicle-Map
https://github.com/OpenHFT/Chronicle-Bytes

Chronicle Bytes
<dependency>

<groupId>net.openhft</groupId>
<artifactId>chronicle-bytes</artifactId>
<version>XYZ</version>

</dependency>

Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
bytes.writeBoolean(0, true);

boolean flag = bytes.readBoolean(0);

MappedBytes mb = MappedBytes
.mappedBytes(new File("mapped_file"), 1024);

mb.appendUtf8(“Hello")
.append(42.42f);

Chronicle Maps

ChronicleMap<LongValue, CharSequence> persistedMap
= ChronicleMap
.of(LongValue.class,

CharSequence.class)
.name("value-map")
.entries(50)
.averageValue("Value-with-Typical-Length")
.createPersistedTo(new File("/dataFile.dat"));

<dependency>
<groupId>net.openhft</groupId>
<artifactId>chronicle-maps</artifactId>
<version>XYZ</version>

</dependency>

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

XODUS

XODUS
Transactional schema-less embedded database
used by JetBrains YouTrack and JetBrains Hub.

https://github.com/JetBrains/xodus

•Xodus is transactional and fully ACID-compliant.
•Xodus is highly concurrent. Reads are completely non-blocking due to MVCC and true snapshot isolation.
•Xodus is schema-less and agile. It does not require schema migrations or refactorings.
•Xodus is embedded. It does not require installation or administration.
•Xodus is written in pure Java and Kotlin.
•Xodus is free and licensed under Apache 2.0.

https://github.com/JetBrains/xodus
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Snapshot_isolation
https://kotlinlang.org/
http://www.apache.org/licenses/LICENSE-2.0.html

XODUS
Snapshot isolation - ONLY

LOG-structured design of XODUS.

All changes are written sequencially to a log. (*.xd – files)
The log is immutable !!

persistent functional data structure

Garbage Collector - Needed

XODUS
<dependency>

<groupId>org.jetbrains.xodus</groupId>
<artifactId>xodus-openAPI</artifactId>
<version>1.3.232</version>

</dependency>

Environments
Entity Stores
Virtual File Systems org.jetbrains.xodus:xodus-vfs:1.3.232

org.jetbrains.xodus:xodus-entity-store:1.3.232
org.jetbrains.xodus:xodus-environment:1.3.232

XODUS - Environments
In short, Environment is a transactional key-value
storage. Store is a named collection of key/value
pairs. If a Store is not allowed to contain duplicate
keys, then it is a map. Otherwise, it is a multi-map.

try (Environment env = Environments
.newInstance("/home/me/.myAppData")) {

env.executeInTransaction(txn -> {
final Store store = env.openStore("Messages",

StoreConfig.WITHOUT_DUPLICATES,
txn);

store.put(txn,
StringBinding.stringToEntry("Hello"),
StringBinding.stringToEntry("World!"));

});
}

https://github.com/JetBrains/xodus/blob/master/openAPI/src/main/java/jetbrains/exodus/env/Environment.java
https://github.com/JetBrains/xodus/blob/master/openAPI/src/main/java/jetbrains/exodus/env/Store.java

XODUS - Entity Stores
The Entity Stores layer is designed to access data as entities with
attributes and links. Use a transaction to create, modify, read and
query data. Transactions are quite similar to those on
the Environments layer, though the Entity Store API is much
richer in terms of querying data.

try (PersistentEntityStore entityStore = PersistentEntityStores.newInstance("/home/me/.myAppData")) {
entityStore.executeInTransaction(txn -> {

final Entity message = txn.newEntity("Message");
message.setProperty("hello", "World!");

});
}

https://github.com/JetBrains/xodus/blob/master/openAPI/src/main/java/jetbrains/exodus/entitystore/Entity.java
https://github.com/JetBrains/xodus/blob/master/openAPI/src/main/java/jetbrains/exodus/entitystore/StoreTransaction.java
https://github.com/JetBrains/xodus/blob/master/openAPI/src/main/java/jetbrains/exodus/env/Transaction.java

XODUS - Virtual File Systems

try (Environment env = Environments.newInstance("/home/me/.myAppData")) {
final VirtualFileSystem vfs = new VirtualFileSystem(env);
env.executeInTransaction(txn -> {

final File file = vfs.createFile(txn, "Messages");
try (DataOutputStream output = new DataOutputStream(vfs.writeFile(txn, file))) {

output.writeUTF("Hello ");
output.writeUTF("World!");

} catch (IOException e) {
throw new ExodusException(e);

}
});
vfs.shutdown();

}

The VirtualFileSystem lets you deal with data in terms of files,
input, and output streams. VirtualFileSystem works over
an Environment instance:

https://github.com/JetBrains/xodus/blob/master/vfs/src/main/java/jetbrains/exodus/vfs/VirtualFileSystem.java
https://github.com/JetBrains/xodus/blob/master/vfs/src/main/java/jetbrains/exodus/vfs/File.java
https://github.com/JetBrains/xodus/blob/master/openAPI/src/main/java/jetbrains/exodus/env/Environment.java

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

MapDB

MapDB

https://github.com/jankotek/mapdb

MapDB combines embedded database engine and Java collections.
It is free under Apache 2 license.

MapDB is flexible and can be used in many roles:
• Drop-in replacement for Maps, Lists, Queues and other collections.
• Off-heap collections not affected by Garbage Collector
• Multilevel cache with expiration and disk overflow.
• RDBMs replacement with transactions, MVCC, incremental backups etc…
• Local data processing and filtering. MapDB has utilities to process huge quantities of data in

reasonable time.

Commercial support is offered by the project owner

https://github.com/jankotek/mapdb

MapDB
<dependency>

<groupId>org.mapdb</groupId>
<artifactId>mapdb</artifactId>
<version>VERSION</version>

</dependency>

DB db = DBMaker .fileDB("/some/file")
.encryptionEnable("password")
.make();

ConcurrentNavigableMap<Integer,String> map = db.treeMap("collectionName",
Serializer.INTEGER,
Serializer.STRING)

.createOrOpen();
map.put(1,"one");
map.put(2,"two"); //map.keySet() is now [1,2] even before commit
db.commit(); //persist changes into disk
map.put(3,"three"); //map.keySet() is now [1,2,3]
db.rollback(); //revert recent changes //map.keySet() is now [1,2]
db.close();

MapDB
DB dbDisk = DBMaker .fileDB(file) .make();

// Big map populated with data expired from cache
DB dbMemory = DBMaker .memoryDB() .make();

// fast in-memory collection with limited size
HTreeMap onDisk = dbDisk .hashMap("onDisk") .create();

HTreeMap inMemory = dbMemory .hashMap("inMemory")
.expireAfterGet(1, TimeUnit.SECONDS) //overflow to `onDisk`
.expireOverflow(onDisk) //background expiration
.expireExecutor(Executors.newScheduledThreadPool(2))
.create();

Possible to build cascaded data-structures with different attributes.
Combination between caching and persistence.
Transactions based on MVCC

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

Microstream

Microstream
https://microstream.one/java-native-persistence Free to use / will be open source soon

MicroStream is a storage technology that stores Java object-graphs natively, which means similar as they are in
the RAM, without expensive transformation to any incompatible data structure.
That is the key difference to all database-systems and provides you the following benefits.

• Only 1 data structure (object-graph), only 1 data model (Java classes)
• no mapping
• No loss of performance through mapping
• Simple architecture, super easy to use
• Simplifies and accelerates your entire database development process

https://microstream.one/java-native-persistence

Microstream Free to use / not open source

<repository>
<id>microstream-releases</id>
<url>https://repo.microstream.one/repository/maven-public/</url>

</repository>

<dependency>
<groupId>one.microstream</groupId>
<artifactId>storage.embedded</artifactId>
<version>04.00.00-MS-GA</version>

</dependency>
<dependency>

<groupId>one.microstream</groupId>
<artifactId>storage.embedded.configuration</artifactId>
<version>04.00.00-MS-GA</version>

</dependency>

Microstream Free to use / not open source

public class HelloWorld {
private String value;
public String getValue() {

return value;
}
public void setValue(String value) {

this.value = value;
}

}

final HelloWorld value = new HelloWorld();
value.setValue("HelloWorld");

final EmbeddedStorageManager storageManager = EmbeddedStorage.start();
storageManager.setRoot(value);
storageManager.storeRoot();
storageManager.shutdown();

Microstream Free to use / not open source

Use a Collection as root – node

Just store your model as it is

No transaction mechanism until now

Loading partial graphs – Virtual Proxies –
private Lazy<ArrayList<MyClass>> myClasses = Lazy.Reference(new ArrayList<>());

Cycles in the graph are not a problem

No special Inheritance

https://dzone.com/articles/high-performance-persistence-with-microstream-part

https://dzone.com/articles/high-performance-persistence-with-microstream-part

Microstream and MVCC

H I D D E N P E A R L S

H I G H - P E R F O R M A N C E - P E R S I S T E N C E

for

DevSecOps / Security

Persistence and Dev(Sec)Ops

Container based Infrastructure

De
vS

ec
O

ps

Application

Linux

Docker

Kubernetes - Universe

Technical Domain specific

Vulnerabilities
Compliance

Every layer we can remove – will remove vulnerabilities

bit.ly/DevSecOps-QuickWins-DE

Low-hanging Fruits - Dependencies
Compliance
One time effort to define allowed Lic

Vulnerabilities

Machine is doing the job

recurrent effort
Machine is scanning

Human is deciding

Application

Operating
System

Docker

Low-hanging Fruits - Dependencies
Compliance

Low-hanging Fruits - Dependencies
Vulnerabilities Application

Operating
System

Docker

Attack-Vector Attack-Vector

Low-hanging Fruits - Dependencies

Vulnerabilities / Compliance

Good Test-Coverage is your safety-belt

Optimize your deployment times

Dependencies are the biggest part

Dependency Management
has the highest impact

Youtube: [DE] - bit.ly/Youtube-Sven

Persistence and Dev(Sec)Ops
Random thoughts

• Smaller amount of components – mostly easier to handle
• Shorter RamUp / RampDown times for TDD
• Datamigration – depends on the system itself
• DataDrivenTesting – just a few binaries hosted in a repo
• Generic Repository in Artifactory - immutable

Compliance / Security Issues

• Lic check of all components
• Security check of al dependencies , including transitive

ones
• As Early as possible #ShiftLeft

Persistence and Dev(Sec)Ops
Only one of the discussed systems
have a Security Issue right now

Based on the missing components
the general amount of
attack vectors are smaller

Complete stack is managed via maven
• Easy to integrate into CI environments
• IDE Support via CodeCompletion

Tooling is not complete:
• DataNavigation / AdHoc query
• Backup / Restore
• …

SecurityPayload Generator Injection

Store a TestPlan with the BuildInfo

Load binary data from Artifactory – Generic Repo
SecurityPayload Generator Injection

Store a TestResults with the BuildInfo

Repo

Testplan

Repo SecurityPayload

TestResultRepo

Additional Content
• https://microstream.one/
• https://github.com/JetBrains/xodus
• https://github.com/jankotek/mapdb
• https://github.com/OpenHFT/Chronicle-Bytes
• https://github.com/OpenHFT/Chronicle-Map

https://microstream.one/
https://github.com/JetBrains/xodus
https://github.com/jankotek/mapdb
https://github.com/OpenHFT/Chronicle-Bytes
https://github.com/OpenHFT/Chronicle-Map

THANK YOU!

Dev. Advocate – DevSecOps
JFrog Inc

Twitter: @SvenRuppert

Youtube: [DE] - bit.ly/Youtube-Sven

svenruppert.com

