

The Future of Automotive Navigation Systems

Company Presentation

State-of-the-Art of IVI Navigation Systems

Digital Navigation Maps

Future Trends & Development

Hybrid Navigation

Augmented Reality

Questions

Techni Sat

Alaryu on the state of the stat

Automotive business is established

Started delivery of the Ultra Low Radio into Volkswagen serial production Started serial production of RNS 315 - navigation systems for Volkswagen Group

Started serial production of Volkswagen MIB2

1997

1998

2002

2007

2010

2012

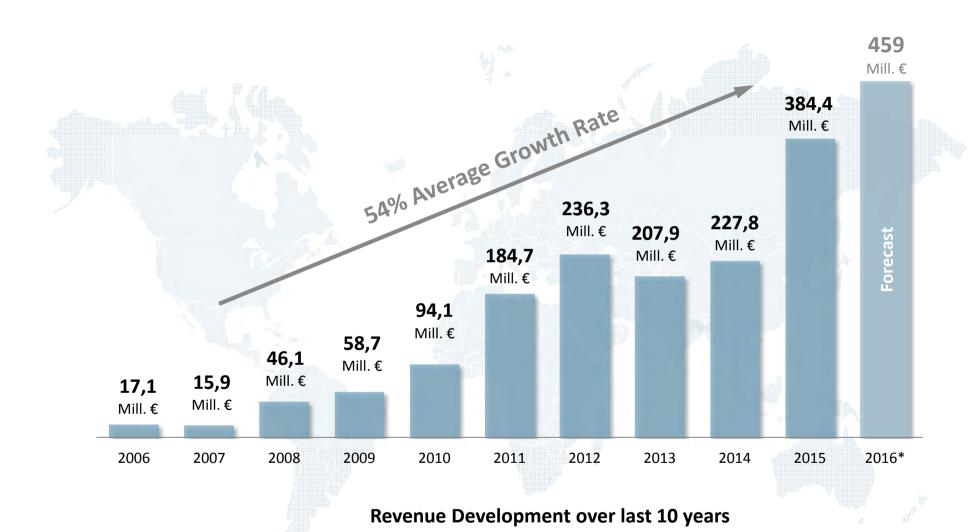
2014

2016

"Werra 1", first car radio from TechniSat, hits the market "NAVI-DRESDEN 1", the first in-carnavigation system, hits the market

Volkswagen Group Award for TechniSat Automotive

Strategic realignment with Joyson and Preh



Note: until end of 2015 no official Automotive profit and loss account as well as balance sheet available.

Legal Entity structure (as per May 2016)

Preh Car Connect GmbH

Dresden, Germany - Headquarter and R&D -

Preh Car Connect Thüringen GmbH

Dippach, Germany
- Production -

Preh Car Connect Polska Sp. Z o.o.

Oborniki, Poland - Production -

Preh Car Connect China Co. Ltd.

Shanghai, China
- R&D and Test Center -

Preh Car Connect USA, Inc.

San Carlos, USA
- Innovation Center -

4 Core Competencies in Research & Development

Audio

- Audio Management includes
 - Audio Source Control
 - Sound Parameter Management
- Signal processing includes
 - Signal routing
 - Filter design

Media

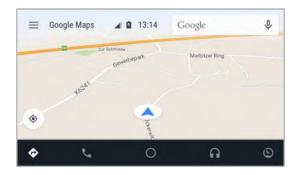
- Supports all common Codecs
 - Audio (MP3, ...)
 - Video (MPEG, ...)
 - Pictures (JPG, ...)
- Supports new media
 - Streaming (Spotify,...)
 - UPNP (Rear Seat Entertainment)
 - Online-Storage (Dropbox)

Radio

- Radio Application and Services
 - AM/FM
 - DAB (EU), SDARS
 - HD-Radio, DRM (India)
 - Online radio
- Radio Base Functions
 - Software Defined Radio
 - Seamless Linking

Apple CarPlay

- Main Features
 - Puts the iPhone right on the car's built-in display
 - Voice control (Siri)
 - Maps is available
 - Listening to Messages and dictating Messages while driving
 - Access to whole iTunes-Content


Android Auto

- Main Features
 - Integrated steering wheel controls
 - Minimizes distraction
 - Information appears just when needed
 - Access to favorite apps and content

Baidu CarLife

- Main Features
 - Supporting both Android and iOS
 - Connecting via USB or WiFi
 - Picking various Apps suit for driving
 - Maps, Music, Phone
 - Voice Control & Apps Platform

Integration of Cluster Instrument and Infotainment

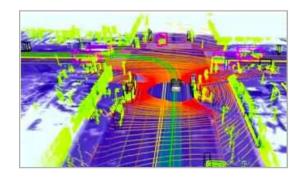
Key Benefits

- Shared Resources
 - Lower Redundancy
- Fewer Interfaces
 - Lower Complexity
- One seamless HMI
- Less cost for OEM

Key Challenges

- Major change in vehicle architecture
- Cluster instrument know-how
- Safety aspects (e.g.: ISO 26262)
- SOP 2019

Current Project Forward Engineering


- Augmented Reality
 - Head-Tracking
 - Eye-Tracking
 - Gesture Control

- Personal Profile
 - Car Sharing via Smartphone
 - Keyless Entry
 - Face Recognition

- High Precision Positioning
 - Real time lane change
 - Prerequisite for autonomous driving
 - More accurate maneuver announcements

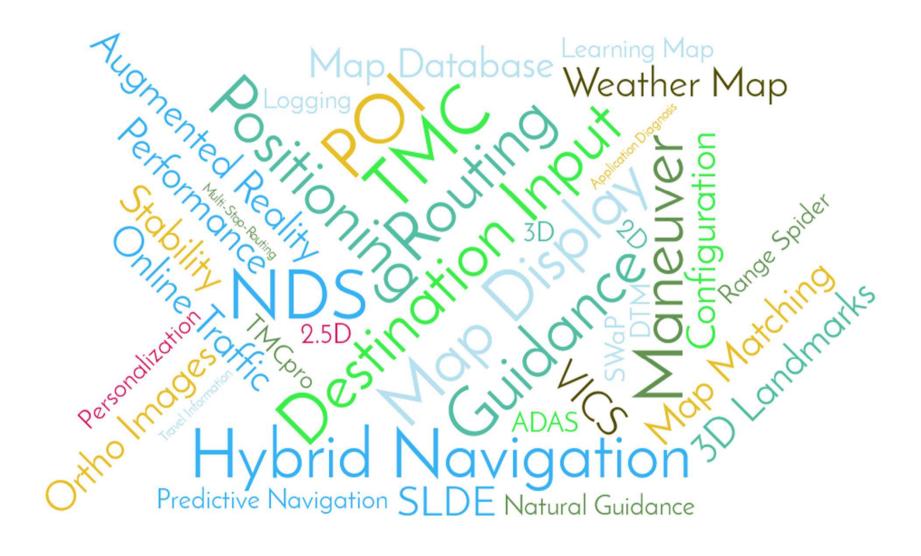
Company Presentation

State-of-the-Art of IVI Navigation Systems

Digital Navigation Maps

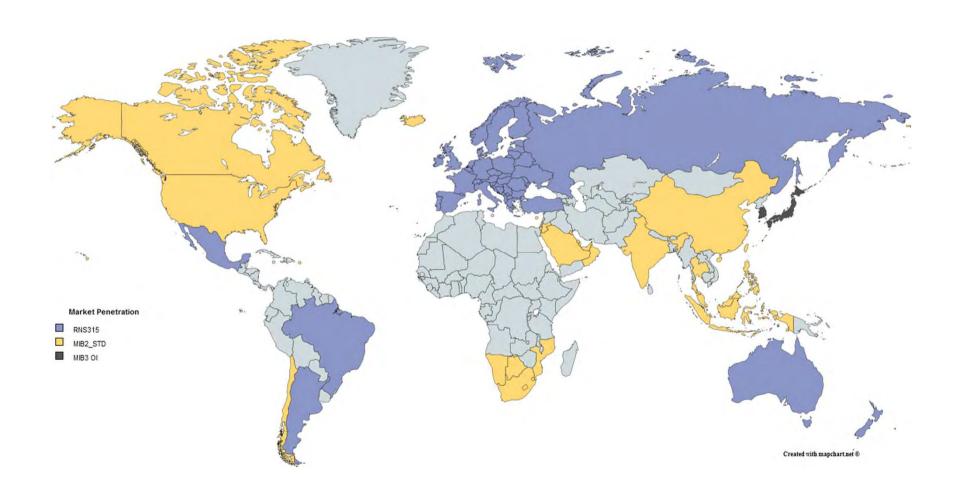
Future Trends & Development

Hybrid Navigation



Augmented Reality

Questions



○ Availablity of Preh Car Connect Navigation increases steadily

Global Navigation Core (2) – Local Preferences

Q: Why is it so hard to develop a global in-vehicle navigation core?

A: Because there is no global understanding of a "good navigation".

- OpenLR
- Left-hand driving in some countries

- **○** National Security Act
- **⇒** DMB

- SiriusXM
- Housenumber first DI
- Driver Distraction

- Writing right to left
- Patriarchy

- Encoded Map
- Elevated Roads
- Governmental cencorship

- **⇒** VICS & ETC
- Left-hand driving
- Different address system

Global Navigation Core (3) - Crossplatform and Compatibility Aspects

Partly Supported

Not Supported (Yet)

Company Presentation

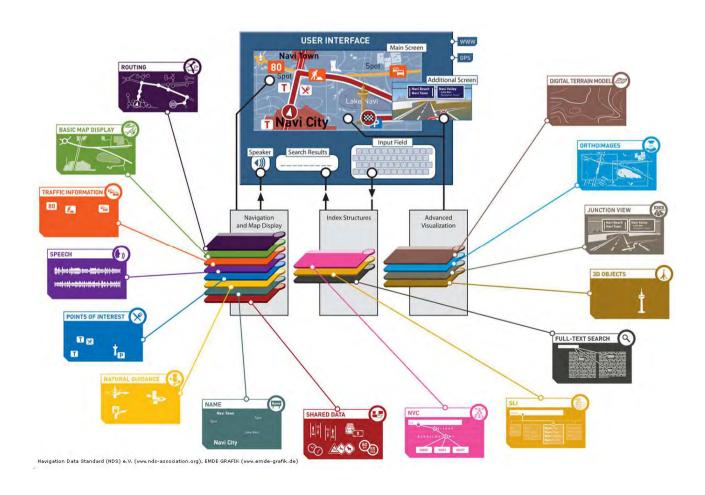
State-of-the-Art of IVI Navigation Systems

Digital Maps

Future Trends & Development

Hybrid Navigation

Augmented Reality



Questions

○ Map consists of update regions and building blocks

Digital Maps – Database Compiler and Map Update

Map updates and the required compiler toolchain are a significant enabler for a powerful navigation.

> Regular update of the map database in the car over SD card or

Over the air update of the map. Requires less user interaction.

Partial update of the map over the Exchange of update regions with respect to their border gates and consistent link IDs.

Partial Update

Incremental delta update of the map over the air. Just actual change sets are applied to the Significantly map. reduced data traffic.

Incremental Update

OTA Update

Map Update

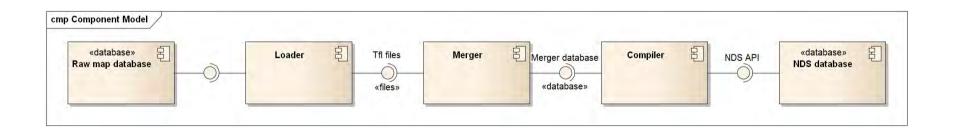
USB stick.

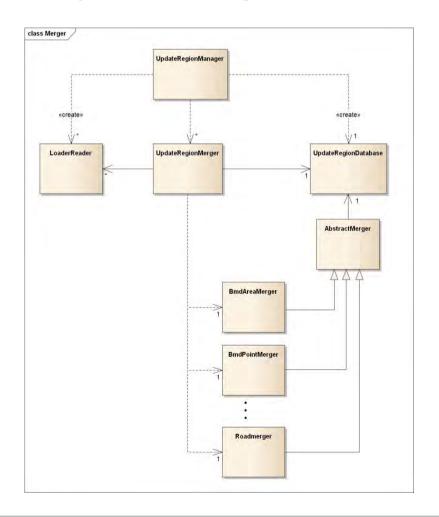
⇒ Five stage compilation and validation pipeline

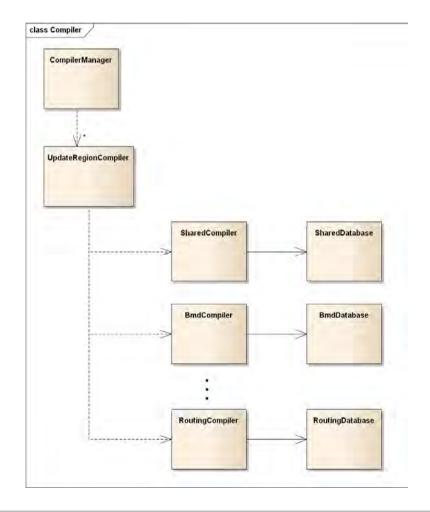
○ Implementation in Java SE 8

⇒ SCM with Subversion / git

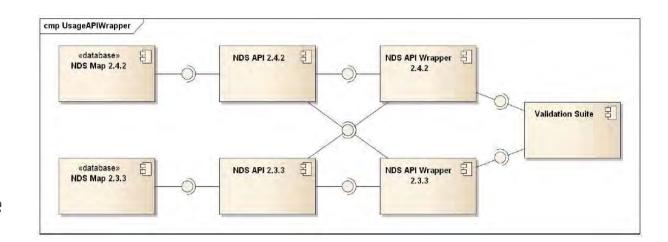
Configuration and management of build jobs with Jenkins

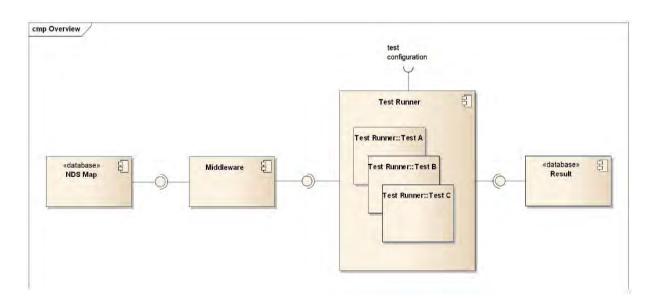


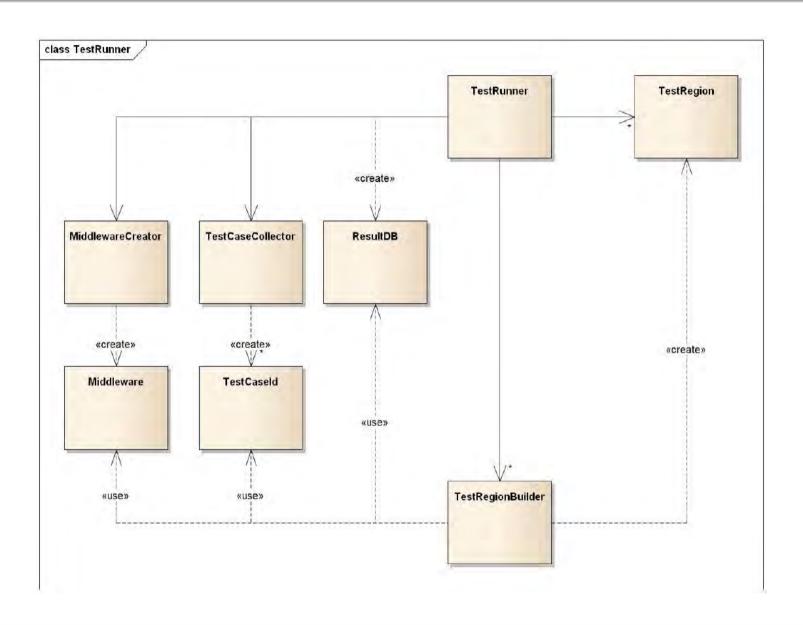

Transformation of map raw data into standard compliant NDS maps



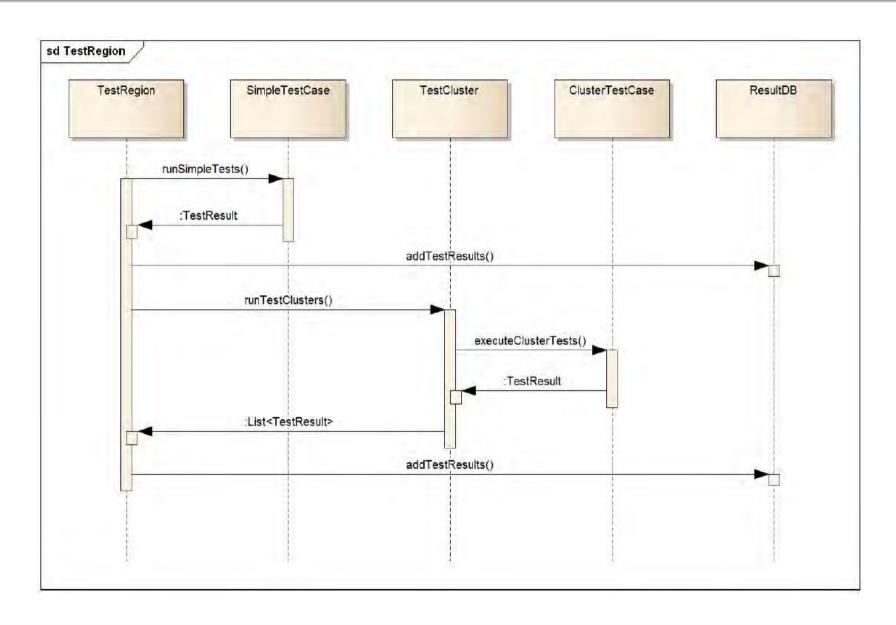
- **Raw data is merged into update regions**
- **⇒** Separate handling of the different building blocks







- Wrapping of different NDS API versions
- Generalized Validation Suite
- Execution of different test runs
- Parallelization for performance optimization possible



Digital Maps – Simple and Complex TestCases

Digital Maps – Compilation of Open Street Map Raw Data

	Copy artifacts	Compile map for preset: Dresden_OSM	Run LOG Validation	Run CB Validation	Export stable map for preset: Dresden_OSM
AVerage stage times:	2min 15s	3min 31s	268ms	1min 0s	12s
#103 No Changes 11:13	2min 15s	3min 31s	268ms	1min 0s	12s

Company Presentation

State-of-the-Art of IVI Navigation Systems

Digital Navigation Maps

Future Trends & Development

Hybrid Navigation

Augmented Reality

Questions

Future Trends & Development

26+ BILLION

devices will be connected by 2020

\$4-11 Trillion Economic Impact

54% of top performer companies will invest more in sensors this yr

Bernet Dated SWC McRistry

⇒ Future cities will have large problems with transportation, traffic, parking, air pollution, a.s.o.

required is a

navigation for

e-mobility

car sharing

intermodal mobility

Company Presentation

State-of-the-Art of IVI Navigation Systems

Digital Navigation Maps

Future Trends & Development

Hybrid Navigation

Augmented Reality

Questions

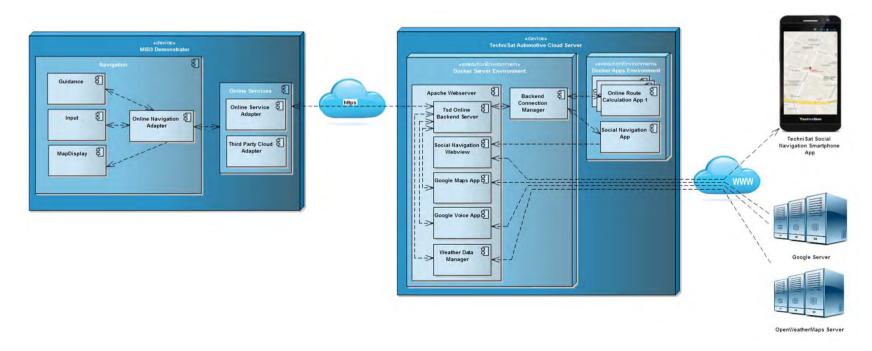
Classical Approach: offline navigation

○ Mobile Approach: online navigation

♦ Next Gen IVI: hybrid navigation

○ Mixture of onboard and online functionality

Customer expects an always working in-vehicle navigation


Current mobile network coverage impedes a fully online IVI navigation

- **⇒** Hybrid navigation demonstrator implemented in 2014
- **⇒** Leads to Proof-of-concept phase with Volkswagen and TomTom for hybrid IVI navigation

Online functionality:

- Route calculation
- Google satellite images
- Google speech recognition
- Weather service
- Social navigation

- **○** Initial Concept for VW Hybrid Navigation presented in April 2015
- Cooperation with TomTom as possible supplier for map data and connected services
- Concept allows an arbitrary number of service suppliers
- Proof-of-concept successful and nominated for series development

- ➡ Relization of next-gen demonstrator with cloud services "under the desk"
- **⇒** Realization of MIB3 Proof-of-concept with Amazon Web Services
- **○** Inquired suppliers for series development:

Company Presentation

State-of-the-Art of IVI Navigation Systems

Digital Navigation Maps

Future Trends & Development

Hybrid Navigation

Augmented Reality

Questions

Q: What means (Automotive) Augmented Reality?

A: "Enrichment of the driver's view with additional information"

⇒ Why Augmented Reality?

- Direct and context-related presentation of information (high user acceptance)
- Increasing safety by reducing driver distraction
- Enables new infotainment and ADAS features

Use Cases

Navigation Augmentation:

Visualization of route guidance, maneuver, destination, racing line

Safety Augmentation:

 Warning for lane departure, risk of collision, crossing pedestrian/cyclists, changing traffic light phases

Information Augmentation:

Emphasizing of road names, road signs, POIs, dead ends etc.

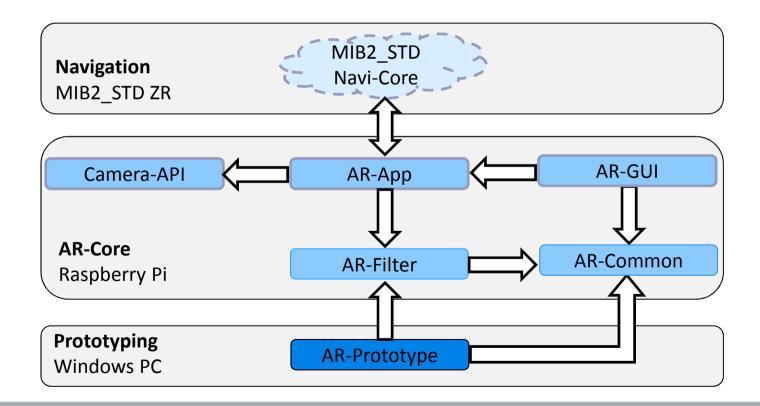
Setup AR-Preh:

- **○** Focus on low cost out-of-the-box components

 Embedded Device
- Raspberry Pi 3 as central AR-unit
 - Processing camera information
 - Processing IV-Navigation data
 - Augmentation of information

Camera

- **○** Raspberry Pi camera (8 MP, Sony IMX219 sensor)
 In-Vehicle-Navigation
- **⇒** Preh MIB2_STD
 - Connected to raspberry via ethernet
 - Providing content for augmentation (e.g. route guidance, map data)
 - Improving lane detection with positioning and map information



Software Architecture

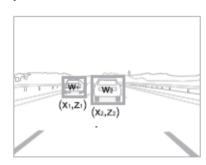
- Strongly modularized and platform independent design for AR-Core
- Encapsulation of image processing functions within AR-Filter module
- Processing filter are connected via signals within a filter graph
- Separate prototyping tool to accelerate development of filter

Guidance Augmentation:

- EKF based multi lane detection performs with 10 Hz on Raspberry
- Navigation provides information about recommended lane and vehicle motion
- Augmenting recommended lane, if vehicle is on wrong lane
- Next step is augmenting the maneuver action (left/right turn, u-turn etc.)

Map Augmentation:

- Right now, names of crossroads are augmented in the real view
- Next step is augmentation of additional map data (POIs, road signs etc.)



Next Steps:

- Extending navigation augmentation for maneuver, poi and destination
- Adding safety augmentation (in-front vehicle detection/ pedestrian detection)

AR Windshield:

- Pushing AR content on the windshield
- Presentation of information should be related to driver's line of sight (contact analogue)
- Integration of in-vehicle face and gaze recognition
- Integration of head-up display or projection

Company Presentation

State-of-the-Art of IVI Navigation Systems

Digital Navigation Maps

Future Trends & Development

Hybrid Navigation

Augmented Reality

Questions

Thank you for your kind attention

